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SUMMARY 

Calculations of ground motion during the earthquake by the·use of coupled 
finite element and boundary element method is presented. The procedure for time 
marching analysis is similar to the Newmark's beta method; the same time 
increment can be used in both the finite element and boundary element regions. 
An alluvial valley is analysed and clear feature of the behavior is obtained. 

INTRODUCTION 

Lately, boundary element method or coupled boundary and finite element 
method has come to be used in the dynamic response analysis of ground. In almost 
all of these analyses, the boundary element region is formulated in frequency 
domain. The reason seems to be the complicated formulation as well as the 
difficulty to obtain a stable solution in time marching analysis. However, it is 
necessary to formulate them in the time domain to analyze transient response 
and/or nonlinear behavior because accurate result cannot be obtained by the 
'analysis in frequency domain in these cases. 

Coupled finite element and boundary element method in time domain were. 
investigated by Fukui et al and by the authors. Fukui et al solved finite 
element region and boundary element region separately by using different time 
increment and employed iterative procedure and least square method to combine 
them, which comes from the requirement to the time increment to obtain stable 
solution in each regi~n. The authors employed the method of weighted residuals 
to combine finite element region and boundary element region. This method have 
advantages that the same time increment can be used in bot~ finite element and 
boundary element regions and no iterative procedure is required, hence can save 
more computing time, and through the numerical examples, i~ was shown that more 
accurate response can be obtained by the proposed method even under the 
complicated input wave. This paper presents the result of analysis of an 
alluvial valley by the use of this method. 

METHOD OF ANALYSIS 

Finite Element Formulation Finite element formulation of the wave propagation 
equation for the scalar wave motion (SH wave) is obtained by the conventional 
techniques as 

[M]{U} + [K]{u} = {P(t)} ( 1 ) 
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where [M] and [K] indicate mass and stiffness matrices, respectively, {U} and 
{u} are acceleration and displacement vectors, respectively, and {P(t)} 
indicates external force vector. When there is no body force except inertia 
force, nonzer~ c6mponent of {P(t)} appears at the freedom·on the interface 
between the finite element region and boundary element region. 

Boundary Element Formulation The boundary integral equation for the scattering 
SH wave in the region which has boundary r as shown in Fig. 1 under the 
condition that there is no scattering wave at time t=O is expressed as 

\ 

t EU(r,t) + J
0
JrT(r,t:r',t')u(r',t')dr'dt' 

t = J 0JrG(r,t:r',t')cr(r',t')dr'dt' + u(r,t) (2) 

where E is a constant determined from the shape of the boundary, u denotes 
incident wave, a denotes traction, t indicates time, and G and T are Green's 
functions correspond to the displacement and traction. By dividing the boundary 
r into boundary elements and by dividing the time axis into N increments, Eq. 2 
is descretized as 

( 3) 

Here {uk} and {crk} i~dicate di~~lacement and traction vectors at kth time step, 
respectively, and [H k] and [G ] are coefficient matrices of influence 
correspond to them, respectively. 

IT( r, t) (incident wave) 

Fig. Analysed Model by Boundary Element Method 

By multiplying t~e distribution matrix [D] into Eq. 3 and by rearranging 
it, the nodal force P versus nodal displacement uN relation at Nth time step is 
obtained as follows: 

{ P N} = [ K * ]{ u N} - [ D ]{ fN} ( 4) 

Here, [K*J = [D][GNNJ-1[HNN], and {fN} is an external load term determined from 
the tractions and displacements before the Nth time step and incident wave at 
Nth time step.· Equation 4 is the governing equation in the boundary element 
region. It is noted that Eq. 4 can be interpreted as the discretized expression 
of the following equation which is obtained by applying the deconvolution into 
Eq. 2: 

cr(r,t) 
t ~ 

= J0JrA.(r,t:r' ,t')u(r' ,t')- f(r,t) 
,... 

where A is an integral operator obtained from Green's function, and f(r,t) is 
external load term derived from incident wave and Green's function. 

(5) 

Coupling the Finite and Boundary Element Regions It is necessary to satisfy 
the kinematic condition and equilibrium condition on interface between the 
finite element and boundary element regions. The following g6v~rning equation is 
obtained by applying these conditions into Eqs. 1 and 4: 

[M]{u} + [K]{u} + f~[A(t:t')j{u(t')}dt' = {f(t)} ( 6) 
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where [A(t:t')] is a matrix obtained by discretizing Eq. 5 in space, and {f(t)} 
is external· load term vector obtained when replacing Eq. 5 into the relation 
between the nodal force and displacement. As shown, the coupled equation are 
integral-differential equation with respect to time. The method of weighted 
residuals is employed to relax the equilibrium condition so. as to solv~ this 
equation. The relaxed equilibrium condition is expressed by the use of weight 
function w(t;) as 

(7) 

where [P} indicates nodal force and subscripts F and B indicate finite element 
and boundary element regions, respectively. The variable t is a dimensionless 
time expressed as 

t 
t = -- - N + 1 t.t (8) 

The final governing equation is obtained as follows by integrating Eq. 7 
using second order displacement functions in both finite element and boundary 
element regions, oth order functions as interpolation function of traction for 
time on the boundary of boundary element region, and using the even function for 
w( ~), as 

[M + Bt.t2K + t. t 2K*/2]{uN} = [2M - (1-2S)t.t 2K- t.t 2K* /2]{uN-1} 

+ [-M -Bt.t2K]{uN-2} + t.t2 [D]({fN} + {fN-1})/2 (9) 

The same time increment is used in both boundary element and finite element 
regions to integrate the governing equation by this method, which procedure is 
similar to the Newmark's beta method except that there exist boundary element 
term. The solutions of Eq. 9 gives displacement response of the ground. 
Velocities and acceleration responses are obtained by differentiating the 
interpolation function of displacements for time, which is employed when 
discretizing Eq. 2 into Eq. 3, with respect to time. 

DYNAMIC BEHAVIOR OF ALLUVIAL VALLEY 

Analysis The dynamic behavior of an alluvial valley is investigated. The model 
is soft soil on the rock base and is shown in Fig. 2. The incident SH wave 
enters the valley from left hand side at the incident angle of 45 degree from 
vertical axis. In the analysis, six nodes triangular element is used as the 
finite element, second order function is used to interpolate the displacement of 
the boundary element, which interpolation function is the same order function 
with the displacement function of finite elements, and first order function is 
used to interpolate tractions in space. The Green's function for the semi
infinite region is used in the analysis of the boundary element region. 

A B C D E 

Incide~t 
wave 

45° 

BE region 
,u=1x106 kN/m2 

p=2t/m3 

. 

FE region 
,u=1x105 kN/m2 

p=2t/m3 

G eo. seale o~-.. _ __t__-=-zo±-:o::-----'--;-;.400m 

Fig. 2 Alluvial Valley Model, Finite Element Mesh and Material Properties 
(~: shear modulus, p: mass density) 
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The El-Centro 1940 wave is used as the incident SH wave whose time 
increment is 0. 01 second, duratio-n is 1.0 seconds and maximum acceleration is 
normalized to 0. 13G, which. is shown·' in Fig. 3. The displacement time history of 
the in6ident wave, which is r~quired to compute the r{~ht hand term of Eq. 9, is 
computed using the FFT technique from the acceleration time history, which 
displacement is shown in part(b) of Fig. 3. Since time increment to be used in 
the analysis so as to obtain accurate response relates the shear wave velocity 
of the boundary element region and the length of boundary elements, the time 
increment are determined 0.05 second to solve Eq. 9. Therefore high frequency 
component of the wave may be filtered in the analysis. Here it is noted that 
original time increment, 0.01 second, is used to compute external load term {f} 
in Eq. 9. Smaller time increment can be used if the length of the boundary 
element is shorter (minimum length of boundary element is 100m in the model in 
Fig. 2). The value of 1/4 is used for s. 
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Fig. 3 Acceleration and Displacement Time Histories of Incident Wave 

0.4 

...-
0 ..._.... 
0 o.o~~~~44~~~~,_~4-~~~+-~ 
(.) 

~ 

--.. 
0 ..._.... 
0 0.0~----~--~~~----+-~~~~~~ 
() 

cO 

-o. 4 point B 
0.4 

0 
~ 0.0~----~~-+~~--~--+-~--~~~ 

C) 

cO 

point C 
-o.4~~--~--~~--~--~~--~--~-

0 2 4 6 8 10 

time( sec) 

0.4 

..-
c..? 

............. 

c.i 0.0 
() 

~ 

-o. 4 point D 

0.4 

..-
~ 

c.i 0.0 
(.) 

~ 

point E 
-o. 4 

0 2 4 6 

time( sec) 

Fig. 4 Acceleration Response at the Surface 

II -626 

8 

10 

10 



Characteristics of ground vibration at alluvial valley The acceleration time 
histories at points A, B, c, D and E in Fig. 3 are shown in Figs. 4. The maximum 
acceleration at point A are larger than those at the oth.er points, which 
indicate that the energy of earthquake wave c6ncentr~te near point A as the wave 
reflects and refracts in ihe co~plicated manner near the dipping interf~ce. 

The predominant period of the response acceleration at points B, C and D 
seems longer than those at points A and E ~hich locate close to the dipping 
interface. The depth at points A and E are smaller than that at points B, C and 
D, which difference appears in the predominant period of the response. 

The predominant period of the acceleration response is much larger than 
that of incident wave. Moreover, the earlier part of the waveform at points B, C 
and D are similar to each other and obvious phase lag is observed. These 
phenomena indicate that surface wave is generated in the alluvial valley. To see 
it more clearly, the displacement shapes at the surface at every time step are 
shown in Fig. 5. The phase velocity of the wave which travells from left to 
right hand side is about 500 m/second which is a half of the phase velocity of 
SH wave in the horizontal direction, 1000m/second. Figure 6 shown dispersion 
property of fundamental mode of Love wave at the horizontally layered part of 
the alluvial valley. The period of the Airy phase of this wave is about 4 
seconds and the phase velocity is about 500 m/second, which agrees with the 
calculated wave very much. Therefore the existence of Love wave is confirmed. 
Moreover, it is recognized that the surface wave have much effect on the dynamic 
response of the alluvial valley. 
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Fig. 5 Displacement Shapes at the Surface 
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Although the ~arly part bf the waveform at points B, C ~nd D are similar to 
each other·,. the le1tter part ·or th.em cannot be said to be similar. This indicate 
that the wave's 'repeatedly'· reflectel--d at the soft soil-rock base interface and the 
su,rface come to affect 'the response, which 'is also clearly' seen in Fig. 5. It· is 
also noted th~t the ·acceleration of the incident wave beco~es maximo~ in an 
early time but that of the response at the surface becomes maximum in the late 
time, therefbre the effect of reflected wave ~e~ms t~ become predominant. 
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Fig. 6 Dispersion Property of Love Wave at Horizontally Layered Part 

COHCLUDIHG REMARKS 

The dynamic response of the soft ground above the rock-base is investigated by 
the use of coupled finite element and boundary element method in time domain. 
Since this method directly computes the solution in time domain, it is useful, 
for example, in the transient wave analysis and nonlinear analysis. The 
numerical calculation of the ground gives clear feature of the dynamic response 
at an alluvial valley The surface wave is generated and have predominant effect 
of the behavior. Moreover, the reflected waves also have predominant effect as 
time goes on. 
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